6 research outputs found

    Exploring Emotions Using Invasive Methods: Review of 60 Years of Human Intracranial Electrophysiology

    Get PDF
    Over the past 60 years, human intracranial electrophysiology (HIE) has been used to characterize seizures in patients with epilepsy. Secondary to the clinical objectives, electrodes implanted intracranially have been used to investigate mechanisms of human cognition. In addition to studies of memory and language, HIE methods have been used to investigate emotions. The aim of this review is to outline the contribution of HIE (electrocorticography, single-unit recording and electrical brain stimulation) to our understanding of the neural representations of emotions. We identified 64 papers dating back to the mid-1950s which used HIE techniques to study emotional states. Evidence from HIE studies supports the existence of widely distributed networks in the neocortex, limbic/paralimbic regions and subcortical nuclei which contribute to the representation of emotional states. In addition, evidence from HIE supports hemispheric dominance for emotional valence. Furthermore, evidence from HIE supports the existence of overlapping neural areas for emotion perception, experience and expression. Lastly, HIE provides unique insights into the temporal dynamics of neural activation during perception, experience and expression of emotional states. In conclusion, we propose that HIE techniques offer important evidence which must be incorporated into our current models of emotion representation in the human brain

    An fMRI investigation of the neural correlates underlying the autonomous sensory meridian response (ASMR)

    Get PDF
    Introduction: The "autonomous sensory meridian response" (ASMR) is a neologism used to describe an internal sensation of deep relaxation and pleasant head tingling which is often stimulated by gentle sounds, light touch, and personal attention. Methods: An fMRI-based methodology was employed to examine the brain activation of subjects prescreened for ASMR-receptivity (n=10) as they watched ASMR videos and identified specific moments of relaxation and tingling. Results: Subjects who experienced ASMR showed significant activation in regions associated with both reward (NAcc) and emotional arousal (dACC and Insula/IFG). Brain activation during ASMR showed similarities to patterns previously observed in musical frisson as well as affiliative behaviors. Conclusion: This is the first study to measure the activation of various brain regions during ASMR and these results may help to reveal the mechanistic underpinnings of this sensation

    Proceedings of the Thirteenth International Society of Sports Nutrition (ISSN) Conference and Expo

    Get PDF
    Meeting Abstracts: Proceedings of the Thirteenth International Society of Sports Nutrition (ISSN) Conference and Expo Clearwater Beach, FL, USA. 9-11 June 201

    Corrosion Characteristics Dictate the Long-Term Inflammatory Profile of Degradable Zinc Arterial Implants

    No full text
    There has been considerable recent interest to develop a feasible bioresorbable stent (BRS) metal. Although zinc and its alloys have many potential advantages, the inflammatory response has not been carefully examined. Using a modified wire implantation model, we characterize the inflammatory response elicited by zinc at high purity (4N) [99.99%], special high grade (SHG)[∼99.7%], and alloyed with 1 wt % (Zn-1Al), 3% (Zn-3Al), and 5.5% (Zn-5Al) aluminum. We found that inflammatory cells were able to penetrate the thick and porous corrosion layer that quickly formed around SHG, Zn-1Al, Zn-3Al, and Zn-5Al implants. In contrast, a delayed entrance of inflammatory cells into the corrosion layer around 4N zinc due to a significantly lower corrosion rate was associated with greater fibrous encapsulation, appearance of necrotic regions, and increased macrophage labeling. Interestingly, cell viability at the interface decreased from SHG, to Zn-1Al, and then Zn-3Al, a trend associated with an increased CD68 and CD11b labeling and capsule thickness. Potentially, the shift to intergranular corrosion due to the aluminum addition increased the activity of macrophages. We conclude that the ability of macrophages to penetrate and remain viable within the corrosion layer may be of fundamental importance for eliciting biocompatible inflammatory responses around corrodible metals

    Proceedings of the Thirteenth International Society of Sports Nutrition (ISSN) Conference and Expo

    No full text
    corecore